
An introduction to Score-based Generative Models

Lecture 2: Introduction to score-based generative models

Giovanni Conforti, Alain Durmus

École polytechnique

with the help of Valentin De Bortoli, Marta Gentiloni-Silveri, Emmanuel Gobet, Yazid

Janati, Éric Moulines, Maxence Noble, Tom Sander, and many others...

February 21, 2024

1 / 52

Outline

Goal of today’s course:

▶ Score matching / Denoising score matching
▶ Introduce SGM with time-reversal (without relying on stochastic

calculus).

Outline of the course:

▶ Introduction of SGM with discrete-time reversal following

Sohl-Dickstein et al. (2015).
▶ Introduction of SGM with variational approaches following Ho et al.

(2020).

Figure 1: Noising process in SGM. Image extracted from Song et al. (2020b).

2 / 52

Score matching and denoising score

matching

Reminder on EBM

Consider the case λ = Leb and X = Rd .

EBM consists in defining a family {µθ : θ ∈ Θ} directly from a family of

potential/energy functions {Uθ : θ ∈ Θ}: for x ∈ Rd

pθ(x) = (dµθ/dLeb)(x) = exp[−Uθ(x)]/Z(θ) ,

Z(θ) =
∫
Rd exp[−Uθ(x̃)]dx̃ .

Uθ is typically a neural network (θ ∈ Θ is a set of parameters).

We saw in the last course how to train an EBM based on maximum

likelihood estimation (MLE).

3 / 52

Score matching for EBM

An alternative to MLE is score matching (SM)

It consists in minimizing the Fisher divergence:

DF (µ
⋆|µθ) =

∫
∥∇x log pθ −∇x log p

⋆∥2 dµ⋆

Supposing p⋆ ≪ Leb with a smooth density p⋆

General principle in statistics not restrained on EBM... Hyvärinen (2005)

4 / 52

Score matching for EBM

SM consists in minimizing the Fisher divergence:

DF (µ
⋆|µθ) =

∫
∥∇x log pθ −∇x log p

⋆∥2 dµ⋆

Problem: we do not have access to ∇x log p
⋆...

How we can show that minimizing θ 7→ DF (µ
⋆|µθ) is equivalent to a

more tractable problem.

5 / 52

Score matching

SM consists in minimizing (w.r.t. θ) the Fisher divergence:

DF (µ
⋆|µθ) =

∫
∥∇x log pθ −∇x log p

⋆∥2 dµ⋆

Problem: we do not have access to ∇x log p
⋆...

It is equivalent to minimizing (w.r.t. θ)∫
∥∇x log pθ∥2 dµ⋆ + 2

∫
∆x log pθdµ

⋆

An empirical counterpart of the above functions is:

N−1
N∑
i=1

{
∥∥∥∇x log pθ(x

i)
∥∥∥2

+∆x log pθ(x
i)} ,

where {x i}Ni=1 are observations of µ⋆.

6 / 52

Denoising Score Matching

In case µ⋆ do not admit a smooth density

We can consider instead µ⋆
ε = µ⋆ ∗φε, where φε is the density of N(0, ε Id)

It has the smooth density:

p⋆
ε (y) =

∫
dµ⋆(x)φε(y − x) .

It turns out that minimizing (w.r.t. θ) DF (µ
⋆
ε |µθ) is equivalent to

minimizing∫
dµ⋆φε(y − x) ∥∇x logφε(y − x)−∇x log pθ(y)∥2 .

7 / 52

Discrete time-reversal and score-based

generative modeling

Outline of the section

In this section we introduce SGM in a “direct” manner.

A bit of “history”:

▶ First paper Sohl-Dickstein et al. (2015).
▶ First successful application Song and Ermon (2019).
▶ Concurrently (variational approach) Ho et al. (2020).

We present some techniques to train SGM.

In what follows:

▶ Time-reversal in discrete-time.
▶ Links with annealed Langevin.
▶ A (very) few Implementation details and tricks.

8 / 52

Discrete-time

9 / 52

Principles of SGM

Figure 2: Noising and generative processes in SGM. Image extracted from Song et al.

(2020b).

Interpolating between two distributions:

▶ The data distribution is denoted µ⋆ ∈ P(Rp) with density p⋆.
▶ The easy-to-sample distribution is denoted ν0 ∈ P(Rp) with density

q0.
▶ ν0 is usually the standard multivariate Gaussian distribution.

Going from the data to the easy-to-sample distribution: noising process.

Going from the easy-to-sample to the data distribution: generative

process.

How to invert the forward noising process?

10 / 52

A Markov model

First idea:

Progressively going from ν0 to µ⋆ in ns ∈ N∗ steps,

defining {Xi}nsi=0 such that X0 ∼ µ⋆ and Xns ∼ ν0.

How to define {Xi}nsi=0?

Second idea:

Consider {Xi}nsi=0 as a non-homogeneous Markov chain starting

from X0 ∼ µ⋆,

using a sequence of transition densities {pk+1|k}N−1
k=0 corresponding to

Xk+1|Xk ∼ pk+1|k(·|Xk),

and which converges to ν0: Xns has distribution ≈ ν0.

(X0, . . .Xns) has for density for any x0:ns = {xk}nsk=0

p0:ns (x0:ns) = p0(x0)
∏ns−1

k=0 pk+1|k(xk+1|xk) ,

denoting for simplicity p⋆ by p0.

(X0, . . .Xns) is called the noising process.

11 / 52

Ancestral/backward sampling I

(X0, . . .Xns) has for density for any x0:ns = {xk}nsk=0

p0:ns (x0:ns) = p0(x0)
∏ns−1

k=0 pk+1|k(xk+1|xk) ,

denoting for simplicity p⋆ by p0.

Define the marginal associated with Xk :

pk(xk) =

Let us pretend that the distribution of Xns , pns , is approximately ν0

Question: starting from a sample Y0 from pns ≈ ν0, can we obtain a

sample from µ⋆?

Alternative/equivalent question: can we sample from p0:ns starting from

pns ≈ ν0?

12 / 52

Ancestral/backward sampling II

(X0, . . .Xns) has for density for any x0:ns = {xk}nsk=0

p0:ns (x0:ns) = p0(x0)
∏ns−1

k=0 pk+1|k(xk+1|xk) ,

denoting for simplicity p⋆ by p0.

Define the marginal associated with Xk : pk .

Alternative/equivalent question: can we sample from p0:ns starting from

pns ≈ ν0?

Main remark:

Idea: sample iteratively Yk+1|Yk with conditional distribution Xk |Xk+1!

13 / 52

Ancestral/backward sampling II

(X0, . . .Xns) has for density for any x0:ns = {xk}nsk=0

p0:ns (x0:ns) = p0(x0)
∏ns−1

k=0 pk+1|k(xk+1|xk) ,

denoting for simplicity p⋆ by p0.

Define the marginal associated with Xk : pk .

Alternative/equivalent question: can we sample from p0:ns starting from

pns ≈ ν0?

Main remark:

Idea: sample iteratively Yk+1|Yk with conditional distribution Xk |Xk+1!

13 / 52

Ancestral/backward sampling II

(X0, . . .Xns) has for density for any x0:ns = {xk}nsk=0

p0:ns (x0:ns) = p0(x0)
∏ns−1

k=0 pk+1|k(xk+1|xk) ,

denoting for simplicity p⋆ by p0.

Alternative/equivalent question: can we sample from p0:ns starting from

pns ≈ ν0?

Main remark: the backward decomposition

p0:ns (x0:ns) = pns (xns)
∏ns−1

k=0 pk|k+1(xk |xk+1) .

Questions:

Choice for {pk+1|k}ns−1
k=0

Estimation of {pk|k+1}ns−1
k=0

14 / 52

Choice for {pk+1|k}ns−1
k=0

How do we go from the data distribution to the easy-to-sample

distribution?

▶ Take inspiration from autoregressive process:

Xk+1 = αXk +
√

1− α2Zk+1

for {Zk}k∈N i.i.d. N(0, Id) Gaussian and α < 1.
▶ (Xk)k∈N∗ → N(0, Id) exponentially fast as.
▶ Ornstein-Ulhenbeck process (continuous counterpart of AR):

dXt = −Xtdt +
√
2dBt .

▶ Euler-Maruyama discretization: Xk+1 = (1− γ)Xk +
√
2γZk+1,

γ > 0 is the stepsize.
▶ Euler-Maruyama discretization of the Ornstein-Ulhenbeck process

converges exponentially fast towards N(0, Id /(1− γ/2)) if γ < 1.

15 / 52

Inverting the noising process (1/3)

Now let us try to invert the forward noising process

Difficulty comes from the initial distribution µ⋆

If µ⋆ is Gaussian, (Xk)
ns
k=0 is a Gaussian vector: pk|k+1(xk |xk+1) is a

Gaussian density

Can we still have a Gaussian approximation?

Let us try to approximate γ small

pk|k+1(xk |xk+1) =

16 / 52

Inverting the noising process (2/2)

Hence, we get that

pk|k+1(·|xk+1) ≈ N(·; xk+1 + γ{xk+1 + 2∇ log pk(xk+1)}, 2γ Id) .

▶ The approximation is up to a term of order γ in the exponential.

Sampling from the backward chain: Y0 ∼ ν0 = N(0, Id /(1− γ/2))

Yk+1 = Yk + γ{Yk + 2∇ log pk(Yk)}+
√

2γZk+1 .

∇ log pk is untractable. We are going to approximate this term.

17 / 52

Score-matching (1/4)

Recall

pk(xk) =

∫
p0:k−1(x0:k)dLeb(x0 . . . xk−1) .

The term ∇ log pk is the called the (Stein) score.

Literature on score matching: Hyvärinen (2005); Vincent (2011)

We have the Fisher identity; see e.g., Efron (2011)

∇ log pk(xk) =

An intermediate expression:

▶ ∇ log pk|0(xk |x0) is tractable (forward transition).
▶ The conditional expectation is not (backward conditional).

We are going to use the property of the conditional expectation to obtain

a loss function.

18 / 52

Score-matching (1/4)

Recall

pk(xk) =

∫
p0:k−1(x0:k)dLeb(x0 . . . xk−1) .

The term ∇ log pk is the called the (Stein) score.

Literature on score matching: Hyvärinen (2005); Vincent (2011)

We have the Fisher identity; see e.g., Efron (2011)

∇ log pk(xk) =

An intermediate expression:

▶ ∇ log pk|0(xk |x0) is tractable (forward transition).
▶ The conditional expectation is not (backward conditional).

We are going to use the property of the conditional expectation to obtain

a loss function.

18 / 52

Score matching (2/4)

We have

∇ log pk(Xk) = E[∇ log pk|0(Xk |X0)|Xk] .

Using properties of the conditional expectation we have

∇ log pk =

19 / 52

Score matching (2/4)

We use the following properties of the conditional expectation:

▶ Y = E[X |U] if Y = f (U), with f = argmin{E[∥X − f (U)∥2] : f ∈ L2(U)}.

Recall that we have

∇ log pk(Xk) = E[∇ log pk|0(Xk |X0)|Xk] .

Using the previous property we have

∇ log pk = argmin{E[∥f (Xk)−∇ log pk|0(Xk |X0)∥2] : f ∈ L2(pk)} .

We obtain a loss function:

∇ log pk|0(xk |x0) is tractable (forward transition).

The expectation can be approximated with Monte Carlo (joint

distribution).

Note that this is valid for k ∈ {0, . . . , ns − 1}.

20 / 52

Score matching (3/4)

Recall that the loss function is given by

∇ log pk = argmin{E[∥f (Xk)−∇ log pk|0(Xk |X0)∥2] : f ∈ L2(pk)} .

This loss function is called the Denoising Score Matching loss.

▶ ∇ log pk|0(Xk |X0) =?.

▶ f tries to predict the residual noise from Xk .

21 / 52

Score matching (3/4)

Recall that the loss function is given by

∇ log pk = argmin{E[∥f (Xk)−∇ log pk|0(Xk |X0)∥2] : f ∈ L2(pk)} .

This loss function is called the Denoising Score Matching loss.

▶ ∇ log pk|0(Xk |X0) =?.
▶ f tries to predict the residual noise from Xk .

21 / 52

Score matching (4/4)

Another formulation: the loss satisfies

E[∥f (Xk)−∇ log pk|0(Xk |X0)∥2]

= E[∥f (Xk)∥2 + 2div(f (Xk))] + E[∥∇ log pk|0(Xk |X0)∥2] .

We obtain the Implicit Score Matching loss function

∇ log pk = argmin{E[1/2∥f (Xk)∥2 + div(f (Xk))] : f ∈ L2(pk)} .

Comparison between ISM/DSM:

▶ DSM: access to ∇ log pk|0.
▶ ISM: no need of the transition density but computation of a

divergence.

▶ Approximation with the Hutchinson estimator:

22 / 52

Training algorithm

We choose the DSM or ISM loss for all k ∈ {1, . . . , ns}
▶ DSMk(f) = E[∥f (Xk)−∇ log pk|0(Xk |X0)∥2].
▶ ISMk(f) = E[1/2∥f (Xk)∥2 + div(f (Xk))].

Defining the integrated loss for f : R+ × Rp → Rp.

▶ ℓDSM(f) =
∑ns

k=1 λkDSMk(f (kγ, ·)),
▶ ℓISM(f) =

∑ns
k=1 λkISMk(f (kγ, ·)).

▶ We define a weighting function λk ≥ 0.

Let {sθ}θ∈Θ a parametric family of functions such that

sθ : R+ × Rp → Rp.

▶ Usually {sθ}θ∈Θ is a family of neural networks.
▶ We optimize ℓDSM(θ) = ℓDSM(sθ) or ℓ

ISM(θ) = ℓISM(sθ).

23 / 52

Backward sampling

Recall the goal:
▶ Sample from p0:ns (x0:ns) = pns (xns)

∏ns−1
k=0 pk|k+1(xk |xk+1) (ancestral

sampling).
▶ Approximate backward

pk|k+1(xk |xk+1) ≈ N(xk ; xk+1 + γ{xk+1 + 2∇ log pk(xk+1)}, 2γ Id).

▶ Approximation of the score (DSM or ISM losses).

Once sθ⋆ is learned via DSM or ISM losses, i.e. sθ⋆(k, ·) ≈ ∇ log pk .

Sampling scheme:
▶ Y0 ∼ N(0, Id) (approximate sampling from pns).
▶ Approximate ancestral sampling

Yk+1 = Yk + γ{Yk + 2sθ⋆(kγ,Yk)}+
√

2γZk+1 .

▶ Yns is approximately distributed according to the data-distribution.

Some remarks:
▶ Time-reversal can be obtained in continuous-time.
▶ Original approach relies on annealed Langevin Song and Ermon

(2019).
▶ Other approaches Ho et al. (2020); Gao et al. (2020).

24 / 52

Links with annealed Langevin

25 / 52

Failure of the score-estimation

We now present (one) original approach by Song and Ermon (2019).

Goal: sampling from the data distribution p⋆.

▶ Langevin algorithm: Xk+1 = Xk + γ∇ log p⋆(Xk) +
√
2γZk+1.

▶ Estimation of the Stein score ∇ log p⋆ with ISM

∇ log p⋆ = argmin{E[1/2∥f (X)∥2 + div(f (X))] : f ∈ L2(p⋆)} .

▶ X ∼ p⋆.

Problems:

▶ Slow mixing with Langevin algorithm (non-convexity).
▶ Bad score approximation.

Figure 3: Image extracted from an online tutorial blogpost.

26 / 52

https://yang-song.github.io/blog/2021/score/

The power of smoothing

A solution: smoothing the density.

▶ Spreading the observations lead to better score estimations.
▶ Smoothing leads to better landscapes of the potential and faster

mixing (removal of spurious minima).

Problem: we do not target the right density.

▶ pσ = p ∗N(0, σ2).
▶ We have that Var(pσ) = Var(p) + σ2.

Trade-off:

▶ Small value of σ: close to p⋆, hard to sample.
▶ Large value of σ: far from p⋆, easy to sample.

Figure 4: Image extracted from an online tutorial blogpost.

27 / 52

https://yang-song.github.io/blog/2021/score/

The best of both worlds

The main of idea of Song and Ermon (2019): annealed Langevin dynamics.

▶ Starting from a large value of σT , sample easily using the Langevin

dynamics.
▶ Reduce the value of σT > σT−1 and warm-start the new Langevin

dynamics with the previous samples.
▶ Repeat the procedure with σ0 very small (close to the target density).
▶ This is an annealed procedure.

Figure 5: Image extracted from an online tutorial blogpost.

28 / 52

https://yang-song.github.io/blog/2021/score/

Training algorithm

Consider {σt}nst=1 a sequence of increasing variances and set

pt = p⋆ ∗ N(0, σ2
t).

Denote by {Xt}nst=0 by X0 ∼ µ⋆,

Xt+1 = Xt + (σ2
t+1 − σ2

t)
1/2Zt+1 , {Zt}nst=1

iid∼ N(0, Id) .

We choose the DSM or ISM loss for all t ∈ {1, . . . , ns}
▶ DSMt(f) = E[∥f (Xt)−∇ log pt(Xt |X0)∥2].
▶ ISMt(f) = E[1/2∥f (Xt)∥2 + div(f (Xt))].

Defining the integrated loss for f : R+ × Rp → Rp.

▶ ℓDSM(f) =
∑ns

t=1 λtDSMt(f (tγ, ·)),
▶ ℓISM(f) =

∑ns
t=1 λtISMt(f (tγ, ·)).

▶ We define a weighting function λt ≥ 0.

Let {sθ}θ∈Θ a parametric family of functions such that

sθ : R+ × Rp → Rp.

▶ Usually {sθ}θ∈Θ is a family of neural networks.
▶ We optimize ℓDSM(θ) = ℓDSM(sθ) or ℓ

ISM(θ) = ℓISM(sθ).

29 / 52

Annealing algorithm

Algorithm 1 Sampling of annealing Langevin dynamics

1: Input: {σt}nst=1, {γ}
ns
t=1, K

2: Initialize Y 0
ns ∼ N (0, σns Id).

3: for t = ns to 1 do

4: for k = 0 to K − 1 do

5: Sample Y k+1
t = Y k

t + γtsθ(σt ,Y
k
t) +

√
2γtZ

k+1
t

6: end for

7: Y 0
t−1 = Y K

t

8: end for

9: Return Y 0
0 .

If K = 1 then it is equivalent to the time-reversal except that:

▶ {γt}nst=1 is a priori unrelated to {σt}nst=1 contrary to the time-reversal

approach where we would have γt = γ and σ2
t = tγ.

▶ Main difference is that the forward process is the discretization of a

Brownian motion and not a Ornstein-Ulhenbeck process.
▶ Xk+1 = Xk − γXk +

√
2γZk+1 in the Ornstein-Ulhenbeck setting and

Xk+1 = Xk +
√
2γZk+1 in the Brownian case.

30 / 52

Implementation details and tricks

31 / 52

Careful implementation is necessary

Originally these models were hard to train Song and Ermon (2019), see

also this blogpost.

In what follows we describe a series of tricks which greatly facilitate the

training of these models. These tricks can be found in Song et al.

(2020b); Song and Ermon (2020); Nichol and Dhariwal (2021); Ho and

Salimans (2021); De Bortoli et al. (2021a).

We do not discuss the architecture here.

32 / 52

https://ajolicoeur.wordpress.com/the-new-contender-to-gans-score-matching-with-langevin-sampling/

Ornstein-Ulhenbeck and discretization

Here SGM as the discretization of a OU process:

▶ Target measure is N(0, Id) (approximately), the data should be

centered and reduced.
▶ Constant stepsize discretization is not what is done in practice.

In practice we consider a schedule on the stepsize:

Yk+1 = Yk + γk{Yk + 2sθ(
∑k

j=0 γj ,Yk)}+
√
2γkZk+1 .

▶ Linear schedule γk = γmin + (γmax − γmin)(ns − k)/ns
▶ Intuition: we need more stepsizes near the data distribution.
▶ Different schedules Song and Ermon (2019); Ho et al. (2020); Nichol

and Dhariwal (2021).

Figure 6: Budget of stepsizes. Image extracted from Watson et al. (2021).

33 / 52

Loss function weighting

In practice a weighted version of the DSM loss is used.

▶ Recall that the DSM loss is given by

DSMk(f) = E[∥f (Xk)−∇ log pk|0(Xk |X0)∥2].
▶ ℓDSM(f) =

∑ns
k=1 λkDSMk(f (k, ·)).

▶ ∇ log pk|0(Xk |X0) = −Ẑk/σk

Intuition: λk function of σk to stabilize the loss Song et al. (2020b).

Additional remarks:

▶ Changing the discretization schedule is equivalent to do a time-change

in the original Ornstein-Ulhenbeck process then a fixed discretization.

34 / 52

Exponential Moving Average

The training of the network is unstable.

To regularize this we consider an Exponential Moving Average of weights.

θ̄n+1 = (1−m)θ̄n +mθn .

▶ The parameter m corresponds to the forgetting of the initial

conditions.
▶ The parameters θ̄K are used at sampling times (K is the number of

training steps).

Figure 7: Training instabilities. Image extracted from Song and Ermon (2020).

35 / 52

Predictor-corrector

Recall that we consider the following Euler-Maruyama discretization

Yk+1 = Yk + γk{Yk + 2sθ(
∑k

j=0 γj ,Yk)}+
√
2γkZk+1 .

We can also correct the Euler-Maruyama scheme using the time-reversal

property.

▶ We must have L(Yk) ≈ pk .
▶ Hence we go from Yk to Ŷk+1 with the Euler-Maruyama scheme

(predictor).
▶ We refine Ŷk+1 by running a Langevin chain targeting pk+1 (corrector).

Y 0
k+1 = Ŷk+1 , Y ℓ+1

k+1 = Y ℓ
k+1 + δk+1sθ(

∑k+1
j=0 γj ,Y

ℓ
k+1) +

√
2δk+1Z

ℓ+1
k+1 .

▶ {δk}nsk=0 is a sequence of stepsizes and we set Yk+1 = Y L
k+1 (L ∈ N).

36 / 52

Conditional sampling and classifier-free guidance

If the data distribution contains classes (like MNIST, CIFAR-10, LSUN,

ImageNet or CelebA when classifying by attributes) then we can exploit

this extra structure.

Define a conditional score

DSMk(f) = E[∥f (X c
k , c)−∇ log pk|0(X

c
k |X c

0)∥2].
▶ c ∈ {1, . . . ,C} is the class of the image.
▶ Then, we can (approximately) sample from the class c by considering

Y c
0 ∼ N(0, Id)

Y c
k+1 = Y c

k + γk{Y c
k + 2sθ(

∑k
j=0 γj ,Y

c
k , c)}+

√
2γkZk+1 .

Figure 8: Class conditional generation. Image extracted from Song et al. (2020b).

Other improvements with unconditional guidance Ho and Salimans

(2021) or classifier guidance Dhariwal and Nichol (2021).
37 / 52

Other approaches

Links with other models

Until now we have presented two approaches to derive score-based

generative models (SGMs) :

▶ A discrete-time time-reversal approach.
▶ An annealed Langevin approach.

The time-reversal approach is now widely used Song et al. (2020b).

We now present links with other generative models:

▶ SGMs as variational autoencoders Ho et al. (2020).

The connection with variational autoencoders allows for:

▶ Extension to discrete settings
▶ Acceleration of the sampling dynamics Watson et al. (2021)

38 / 52

Connections with Variational AutoEncoders

39 / 52

A variational perspective

We follow the approach of Ho et al. (2020).

Variational approach offers great flexibility:

▶ Optimization of the stepsize Watson et al. (2021).
▶ Learning of the covariance matrix Nichol and Dhariwal (2021).
▶ Non-Markov dynamics Song et al. (2020a).

Ho et al. (2020) was the first to propose a discretized

Ornstein-Ulhenbeck Markov chain as a forward process.

Figure 9: CelebA and CIFAR10 results. Image extracted from Ho et al. (2020).

40 / 52

An Evidence Lower BOund (1/2)

We start by deriving an ELBO for the score-based generative models.

Note that such a derivation was already obtained by Sohl-Dickstein et al.

(2015).

Similar to VAE we maximize the log-likelihood for some well chosen

latent Markov model

log(pθ
0 (x0)) =

We now choose the variational distribution qϕ(x1:ns |x0):
▶ We choose a tractable Markovian (Gaussian) decomposition

qϕ(x1:ns |x0) =
∏ns−1

k=0 qϕ
k+1|k(xk+1|xk).

▶ Factorization qϕ(x1:ns |x0) = qϕ
ns |0(xns |x0)

∏ns−1
k=1 qϕ

k|k+1,0(xk |xk+1, x0).

▶ Tractability of qϕ
k|k+1,0.

Here, we consider

qϕ
k+1|k(xk+1|xk) = N(xk+1; (1− γ)xk , 2γ Id).

In Ho et al. (2020): auto-regressive process

41 / 52

An Evidence Lower BOund (1/2)

We start by deriving an ELBO for the score-based generative models.

Note that such a derivation was already obtained by Sohl-Dickstein et al.

(2015).

Similar to VAE we maximize the log-likelihood for some well chosen

latent Markov model

log(pθ
0 (x0)) =

We now choose the variational distribution qϕ(x1:ns |x0):
▶ We choose a tractable Markovian (Gaussian) decomposition

qϕ(x1:ns |x0) =
∏ns−1

k=0 qϕ
k+1|k(xk+1|xk).

▶ Factorization qϕ(x1:ns |x0) = qϕ
ns |0(xns |x0)

∏ns−1
k=1 qϕ

k|k+1,0(xk |xk+1, x0).

▶ Tractability of qϕ
k|k+1,0.

Here, we consider

qϕ
k+1|k(xk+1|xk) = N(xk+1; (1− γ)xk , 2γ Id).

In Ho et al. (2020): auto-regressive process

41 / 52

An Evidence Lower BOund (2/2)

Recall that we have log(pθ
0 (x0)) ≥ L with

L =
∫
(Rp)ns

log(
∏ns−1

k=0 pθ
k|k+1(xk |xk+1)p

θ
ns (xns)/q

ϕ(x1:ns |x0))qϕ(x1:ns |x0)dx1:ns .

We use the backward decomposition of qϕ(x1:ns |x0) and we get

L = Lns +
∑ns−1

k=1 Lk + L0 ,

with:

▶ Lns =
∫
Rp log(p

θ
ns (xns)/q

ϕ
ns |0(xns |x0))q

ϕ
ns |0(xns |x0)dxns .

▶ Lk =
∫
Rp log(p

θ
k|k+1(xk |xk+1)/q

ϕ
k|k+1,0(xk |xk+1, x0))q

ϕ
k,k+1|0(xk , xk+1|x0)dxk .

▶ L0 =
∫
Rp log(p

θ
0|1(x0|x1))q

ϕ
1|0(x1|x0)dx1.

The different terms:

▶ Lns does not depend on θ if we choose pθ
ns = N(0, Id).

▶ Lk is related to score-matching.
▶ L0 is more complicated and will be dealt with later.

42 / 52

The backward qϕk|k+1,0 (1/2)

To compute Lk we need to compute qϕ
k|k+1,0.

We know that qϕ
k|k+1,0 is Gaussian with diagonal covariance and just

need to compute its parameter.

qϕ
k|0 = N(αkx0, σk Id) and qϕ

k+1|k = N(αk+1|k , σk+1|k Id).

Computing the parameters:

▶ αk+1|k = 1− γ, σ2
k+1|k = 2γ.

▶ Xk+1 = (1−γ)kX0+
√
2γ

∑k
j=1(1−γ)k−jZj+1 = (1−γ)kX0+σk+1Ẑk+1.

▶ Ẑk+1 ∼ N(0, Id) and σ2
k+1 = (1− (1− γ)2k)/(1− γ/2).

▶ αk+1 = (1− γ)k , σ2
k+1 = (1− (1− γ)2k)/(1− γ/2).

We have that

qϕ
k|k+1,0(xk |xk+1, x0) = qϕ

k+1|k(xk+1|xk)qϕ
k|0(xk |x0)/q

ϕ
k+1|0(xk+1|x0) .

▶ We can discard the denominator (normalizing constant).
▶ We can focus on log(qϕ

k+1|k(xk+1|xk)qϕ
k|0(xk |x0)).

43 / 52

The backward qϕk|k+1,0 (2/2)

We have that

− 2 log(qϕ
k+1|k(xk+1|xk)qϕ

k|0(xk |x0))

= ∥xk − Ak|k+1xk+1 + Bk|k+1ẑk+1∥2/(2σ2
k|k+1) + D .

where

ẑk+1 = (xk+1 − x0)/σk+1 .

▶ D is a constant independent from xk .
▶ σ2

k|k+1 = (α2
k+1|k/σ

2
k+1|k + (1/σ2

k))
−1.

▶ Ak|k+1 = αk+1|k(σk|k+1/σk+1|k)
2 + αkσ

2
k|k+1/(αk+1σ

2
k).

▶ Bk|k+1 = (αkσk+1σ
2
k+1|k)/(αk+1σ

2
k).

Therefore, we choose the family

− log(pθ
k|k+1(xk |xk+1)) = ∥xk − Ak|k+1xk+1 + Bk|k+1ẑθ,k+1(xk+1)∥2/(2σ2

k|k+1) + E .

E is a constant, ẑθ,k+1(xk+1) is a function of xk+1 (estimator of the noise).

44 / 52

Sampling from the model

How to train and sample the model?

Recall that we have set

− log(pθ
k|k+1(xk |xk+1)) = ∥xk − Ak|k+1xk+1 + Bk|k+1ẑθ,k+1(xk+1)∥2/(2σ2

k|k+1) + E .

Recall that pθ
ns = N(0, Id). To sample from the model:

▶ We sample Y0 ∼ N(0, Id)
▶ We consider the backward update

Yk+1 = Ak|k+1Yk − Bk|k+1ẑθ,k+1(Yk) + σk|k+1Zk+1 .

To train the model (without the therm L1|0):

▶ Minimize
∑ns

k=1 Lk(θ), with

−Lk(θ) = E[∥Yk+1 − Ak|k+1Yk + Bk|k+1ẑθ,k+1(Yk)∥2]/(2σ2
k|k+1) .

45 / 52

Taylor expansion and comparison with SGM (2/2)

The model is already similar to SGM:

▶ We sample from N(0, Id) and use ancestral sampling.
▶ We train part of the drift term.

The analogy becomes even stronger when considering Taylor expansion of

Ak|k+1, Bk|k+1 and σk|k+1:

▶ Ak|k+1 = 1 + γ + o(γ).
▶ Bk|k+1 = 2γ + o(γ).
▶ σ2

k|k+1 = 2γ + o(γ).

Hence

Yk+1 = Ak|k+1Yk − Bk|k+1ẑθ,k+1(Yk) + σk|k+1Zk+1 ,

becomes (up to the first order)

Yk+1 = (1 + γ)Yk − 2γẑθ,k+1(Yk) +
√

2γZk+1 .

We can identify this recursion with the one of SGM if

ẑθ,k+1 ≈ −∇ log pθ
k+1, i.e., the neural network approximates the score.

46 / 52

Taylor expansion and comparison with SGM (2/2)

We want to show that ẑθ,k+1 ≈ −∇ log pθ
k+1, i.e. the neural network

approximates the score.

Recall that we minimize the sum of the following loss functions

−Lk(θ) = E[∥Yk+1 − Ak|k+1Yk + Bk|k+1ẑθ,k+1(Yk)∥2]/(2σ2
k|k+1) .

Up to the first order we get that

−Lk(θ) = E[∥Yk+1 − (1 + γ)Yk + 2γẑθ,k+1(Yk)∥2]/(2γ) .

But we have (1 + γ)Xk+1 = (1− γ2)Xk +
√
2γ(1 + γ)Zk+1 and therefore

(1 + γ)Yk = (1− γ2)Yk+1 +
√
2γ(1 + γ)Zns−k .

Hence, up to the first order we get that

−Lk(θ) = E[∥
√

2γZns−k + 2γẑθ,k+1(Yk+1)∥2]/(2γ) ,

This is exactly the Denoising Score Matching loss (up to a minus term)

times λk (the weighting function appearing score-based models being

fixed to λk = 2γ).

47 / 52

The term L0

The previous recursion is valid up to k = 1.

pθ is an independent decoder on the pixel of the image.

We assume that x0 ∈ [−1, 1]d

pθ(x0|x1) =
∏p

i=1

∫ b(x i0)

a(x i0)
exp[−∥x − µθ(x1)∥2 /σ2

1]/(2πσ
2
1)

pdx .

a(t) = t + 1/255 if t < 1 and +∞ otherwise.

b(t) = t − 1/255 if t > −1 and −∞ otherwise.

We could also have chosen the classical (non-discrete) decoding Gaussian

of the VAE.

Figure 10: CelebA results. Image extracted from Ho et al. (2020).

48 / 52

Continuous diffusion models

Continuous forward process

Recall that in classical diffusion models, the forward dynamics is given by

the following Markov chain

Xk+1 = Xk − γXk +
√

2γZk+1 .

This is the Euler-Maruyama discretization of the Ornstein-Ulhenbeck

process.

dXt = −Xtdt +
√
2dBt .

49 / 52

Time reversal

In discrete time we consider the ancestral sampling of the discretized

Ornstein-Ulhenbeck.

In the continuous-time setting we need to compute the time-reversal of

the Ornstein-Ulhenbeck.

▶ More precisely: does (Yt)t∈[0,T] = (XT−t)t∈[0,T] also satisfies a

Stochastic Differential Equation (SDE)?

The answer is yes under conditions and (Yt)t∈[0,T] is a (weak) solution of

the following SDE

dYt = {Yt + 2∇ log pT−t(Yt)}dt +
√
2dBt .

Note that for any t ∈ [0,T], pt is the density of L(Xt) w.r.t. the Lebesgue

measure, where we recall that (Xt)t∈[0,T] is the forward noising process,

here a Ornstein-Ulhenbeck process.

A few remarks:

▶ First found in Anderson (1982); Haussmann and Pardoux (1986).
▶ The time-reversal formula is valid for more complicated diffusions.

50 / 52

Time Reversal and Comparison with ancestral sampling

Recall that in the discrete-time setting we have

Yk+1 = Yk + γ{Yk + 2sθ⋆(γ(ns − k),Yk)}+
√

2γZk+1 .

In the continuous-time setting we have

dYt = {Yt + 2∇ log pT−t(Yt)}dt +
√
2dBt .

There is a clear link between the two formulations with Euler-Maruyama

discretization.

Note that sθ⋆(γ(ns − k), ·) is supposed to be close to pns−k , the density of

Xns−k .

pT−t is the density of XT−t but these two densities are close if the

stepsize is small.

In practice the Stein score is approximated using score-matching.

▶ DSM and ISM losses can be defined in continuous-time.
▶ Continuous losses can be used in practice because we can exactly

sample from the Ornstein-Ulhenbeck process.

51 / 52

References i

References

Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes

and their Applications, 12(3):313–326, 1982.

Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Karsten

Kreis, Miika Aittala, Timo Aila, Samuli Laine, Bryan Catanzaro, et al. ediffi:

Text-to-image diffusion models with an ensemble of expert denoisers. arXiv preprint

arXiv:2211.01324, 2022.

Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score approximation,

estimation and distribution recovery of diffusion models on low-dimensional data.

arXiv preprint arXiv:2302.07194, 2023.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang.

Sampling is as easy as learning the score: theory for diffusion models with minimal

data assumptions. arXiv preprint arXiv:2209.11215, 2022.

Valentin De Bortoli, Arnaud Doucet, Jeremy Heng, and James Thornton. Simulating

diffusion bridges with score matching. arXiv preprint arXiv:2111.07243, 2021a.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion

schrödinger bridge with applications to score-based generative modeling. Advances

in Neural Information Processing Systems, 34, 2021b.

52 / 52

References ii

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image

synthesis. Advances in Neural Information Processing Systems, 34, 2021.

Garland B Durham and A Ronald Gallant. Numerical techniques for maximum

likelihood estimation of continuous-time diffusion processes. Journal of Business &

Economic Statistics, 20(3):297–338, 2002.

Bradley Efron. Tweedie’s formula and selection bias. Journal of the American

Statistical Association, 106(496):1602–1614, 2011.

Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P Kingma. Learning

energy-based models by diffusion recovery likelihood. arXiv preprint

arXiv:2012.08125, 2020.

Ulrich G Haussmann and Etienne Pardoux. Time reversal of diffusions. The Annals of

Probability, pages 1188–1205, 1986.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021

Workshop on Deep Generative Models and Downstream Applications, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.

Advances in Neural Information Processing Systems, 33:6840–6851, 2020.

Chin-Wei Huang, Jae Hyun Lim, and Aaron C Courville. A variational perspective on

diffusion-based generative models and score matching. Advances in Neural

Information Processing Systems, 34, 2021.

53 / 52

References iii

Aapo Hyvärinen. Estimation of non-normalized statistical models by score matching.

Journal of Machine Learning Research, 6(4), 2005.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence for score-based generative

modeling with polynomial complexity. arXiv preprint arXiv:2206.06227, 2022.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion

probabilistic models. In International Conference on Machine Learning, pages

8162–8171. PMLR, 2021.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion:

Text-to-3d using 2d diffusion. arXiv preprint arXiv:2209.14988, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn

Ommer. High-resolution image synthesis with latent diffusion models. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 10684–10695, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton,

Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,

Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep

language understanding. arXiv preprint arXiv:2205.11487, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep

unsupervised learning using nonequilibrium thermodynamics. In International

Conference on Machine Learning, pages 2256–2265. PMLR, 2015.

54 / 52

References iv

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models.

arXiv preprint arXiv:2010.02502, 2020a.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the

data distribution. Advances in Neural Information Processing Systems, 32, 2019.

Yang Song and Stefano Ermon. Improved techniques for training score-based

generative models. Advances in neural information processing systems, 33:

12438–12448, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano

Ermon, and Ben Poole. Score-based generative modeling through stochastic

differential equations. arXiv preprint arXiv:2011.13456, 2020b.

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood

training of score-based diffusion models. Advances in Neural Information Processing

Systems, 34, 2021.

Pascal Vincent. A connection between score matching and denoising autoencoders.

Neural Computation, 23(7):1661–1674, 2011.

Daniel Watson, Jonathan Ho, Mohammad Norouzi, and William Chan. Learning to

efficiently sample from diffusion probabilistic models. arXiv preprint

arXiv:2106.03802, 2021.

55 / 52

	Score matching and denoising score matching
	Discrete time-reversal and score-based generative modeling
	Other approaches
	Continuous diffusion models
	Conclusion
	References

