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Outline

Goal of today’s course:

▶ Score matching / Denoising score matching
▶ Introduce SGM with time-reversal (without relying on stochastic

calculus).

Outline of the course:

▶ Introduction of SGM with discrete-time reversal following

Sohl-Dickstein et al. (2015).
▶ Introduction of SGM with variational approaches following Ho et al.

(2020).

Figure 1: Noising process in SGM. Image extracted from Song et al. (2020b).
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Score matching and denoising score

matching



Reminder on EBM

Consider the case λ = Leb and X = Rd .

EBM consists in defining a family {µθ : θ ∈ Θ} directly from a family of

potential/energy functions {Uθ : θ ∈ Θ}: for x ∈ Rd

pθ(x) = (dµθ/dLeb)(x) = exp[−Uθ(x)]/Z(θ) ,

Z(θ) =
∫
Rd exp[−Uθ(x̃)]dx̃ .

Uθ is typically a neural network (θ ∈ Θ is a set of parameters).

We saw in the last course how to train an EBM based on maximum

likelihood estimation (MLE).
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Score matching for EBM

An alternative to MLE is score matching (SM)

It consists in minimizing the Fisher divergence:

DF (µ
⋆|µθ) =

∫
∥∇x log pθ −∇x log p

⋆∥2 dµ⋆

Supposing p⋆ ≪ Leb with a smooth density p⋆

General principle in statistics not restrained on EBM... Hyvärinen (2005)
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Score matching for EBM

SM consists in minimizing the Fisher divergence:

DF (µ
⋆|µθ) =

∫
∥∇x log pθ −∇x log p

⋆∥2 dµ⋆

Problem: we do not have access to ∇x log p
⋆...

How we can show that minimizing θ 7→ DF (µ
⋆|µθ) is equivalent to a

more tractable problem.
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Score matching

SM consists in minimizing (w.r.t. θ) the Fisher divergence:

DF (µ
⋆|µθ) =

∫
∥∇x log pθ −∇x log p

⋆∥2 dµ⋆

Problem: we do not have access to ∇x log p
⋆...

It is equivalent to minimizing (w.r.t. θ)∫
∥∇x log pθ∥2 dµ⋆ + 2

∫
∆x log pθdµ

⋆

An empirical counterpart of the above functions is:

N−1
N∑
i=1

{
∥∥∥∇x log pθ(x

i )
∥∥∥2

+∆x log pθ(x
i )} ,

where {x i}Ni=1 are observations of µ⋆.
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Denoising Score Matching

In case µ⋆ do not admit a smooth density

We can consider instead µ⋆
ε = µ⋆ ∗φε, where φε is the density of N(0, ε Id)

It has the smooth density:

p⋆
ε (y) =

∫
dµ⋆(x)φε(y − x) .

It turns out that minimizing (w.r.t. θ) DF (µ
⋆
ε |µθ) is equivalent to

minimizing∫
dµ⋆φε(y − x) ∥∇x logφε(y − x)−∇x log pθ(y)∥2 .
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Discrete time-reversal and score-based

generative modeling



Outline of the section

In this section we introduce SGM in a “direct” manner.

A bit of “history”:

▶ First paper Sohl-Dickstein et al. (2015).
▶ First successful application Song and Ermon (2019).
▶ Concurrently (variational approach) Ho et al. (2020).

We present some techniques to train SGM.

In what follows:

▶ Time-reversal in discrete-time.
▶ Links with annealed Langevin.
▶ A (very) few Implementation details and tricks.
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Discrete-time
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Principles of SGM

Figure 2: Noising and generative processes in SGM. Image extracted from Song et al.

(2020b).

Interpolating between two distributions:

▶ The data distribution is denoted µ⋆ ∈ P(Rp) with density p⋆.
▶ The easy-to-sample distribution is denoted ν0 ∈ P(Rp) with density

q0.
▶ ν0 is usually the standard multivariate Gaussian distribution.

Going from the data to the easy-to-sample distribution: noising process.

Going from the easy-to-sample to the data distribution: generative

process.

How to invert the forward noising process?
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A Markov model

First idea:

Progressively going from ν0 to µ⋆ in ns ∈ N∗ steps,

defining {Xi}nsi=0 such that X0 ∼ µ⋆ and Xns ∼ ν0.

How to define {Xi}nsi=0?

Second idea:

Consider {Xi}nsi=0 as a non-homogeneous Markov chain starting

from X0 ∼ µ⋆,

using a sequence of transition densities {pk+1|k}N−1
k=0 corresponding to

Xk+1|Xk ∼ pk+1|k(·|Xk),

and which converges to ν0: Xns has distribution ≈ ν0.

(X0, . . .Xns ) has for density for any x0:ns = {xk}nsk=0

p0:ns (x0:ns ) = p0(x0)
∏ns−1

k=0 pk+1|k(xk+1|xk) ,

denoting for simplicity p⋆ by p0.

(X0, . . .Xns ) is called the noising process.
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Ancestral/backward sampling I

(X0, . . .Xns ) has for density for any x0:ns = {xk}nsk=0

p0:ns (x0:ns ) = p0(x0)
∏ns−1

k=0 pk+1|k(xk+1|xk) ,

denoting for simplicity p⋆ by p0.

Define the marginal associated with Xk :

pk(xk) =

Let us pretend that the distribution of Xns , pns , is approximately ν0

Question: starting from a sample Y0 from pns ≈ ν0, can we obtain a

sample from µ⋆?

Alternative/equivalent question: can we sample from p0:ns starting from

pns ≈ ν0?
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Ancestral/backward sampling II

(X0, . . .Xns ) has for density for any x0:ns = {xk}nsk=0

p0:ns (x0:ns ) = p0(x0)
∏ns−1

k=0 pk+1|k(xk+1|xk) ,

denoting for simplicity p⋆ by p0.

Define the marginal associated with Xk : pk .

Alternative/equivalent question: can we sample from p0:ns starting from

pns ≈ ν0?

Main remark:

Idea: sample iteratively Yk+1|Yk with conditional distribution Xk |Xk+1!

13 / 52



Ancestral/backward sampling II

(X0, . . .Xns ) has for density for any x0:ns = {xk}nsk=0

p0:ns (x0:ns ) = p0(x0)
∏ns−1

k=0 pk+1|k(xk+1|xk) ,

denoting for simplicity p⋆ by p0.

Define the marginal associated with Xk : pk .

Alternative/equivalent question: can we sample from p0:ns starting from

pns ≈ ν0?

Main remark:

Idea: sample iteratively Yk+1|Yk with conditional distribution Xk |Xk+1!

13 / 52



Ancestral/backward sampling II

(X0, . . .Xns ) has for density for any x0:ns = {xk}nsk=0

p0:ns (x0:ns ) = p0(x0)
∏ns−1

k=0 pk+1|k(xk+1|xk) ,

denoting for simplicity p⋆ by p0.

Alternative/equivalent question: can we sample from p0:ns starting from

pns ≈ ν0?

Main remark: the backward decomposition

p0:ns (x0:ns ) = pns (xns )
∏ns−1

k=0 pk|k+1(xk |xk+1) .

Questions:

Choice for {pk+1|k}ns−1
k=0

Estimation of {pk|k+1}ns−1
k=0
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Choice for {pk+1|k}ns−1
k=0

How do we go from the data distribution to the easy-to-sample

distribution?

▶ Take inspiration from autoregressive process:

Xk+1 = αXk +
√

1− α2Zk+1

for {Zk}k∈N i.i.d. N(0, Id) Gaussian and α < 1.
▶ (Xk)k∈N∗ → N(0, Id) exponentially fast as.
▶ Ornstein-Ulhenbeck process (continuous counterpart of AR):

dXt = −Xtdt +
√
2dBt .

▶ Euler-Maruyama discretization: Xk+1 = (1− γ)Xk +
√
2γZk+1,

γ > 0 is the stepsize.
▶ Euler-Maruyama discretization of the Ornstein-Ulhenbeck process

converges exponentially fast towards N(0, Id /(1− γ/2)) if γ < 1.
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Inverting the noising process (1/3)

Now let us try to invert the forward noising process

Difficulty comes from the initial distribution µ⋆

If µ⋆ is Gaussian, (Xk)
ns
k=0 is a Gaussian vector: pk|k+1(xk |xk+1) is a

Gaussian density

Can we still have a Gaussian approximation?

Let us try to approximate γ small

pk|k+1(xk |xk+1) =

16 / 52



Inverting the noising process (2/2)

Hence, we get that

pk|k+1(·|xk+1) ≈ N(·; xk+1 + γ{xk+1 + 2∇ log pk(xk+1)}, 2γ Id) .

▶ The approximation is up to a term of order γ in the exponential.

Sampling from the backward chain: Y0 ∼ ν0 = N(0, Id /(1− γ/2))

Yk+1 = Yk + γ{Yk + 2∇ log pk(Yk)}+
√

2γZk+1 .

∇ log pk is untractable. We are going to approximate this term.
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Score-matching (1/4)

Recall

pk(xk) =

∫
p0:k−1(x0:k)dLeb(x0 . . . xk−1) .

The term ∇ log pk is the called the (Stein) score.

Literature on score matching: Hyvärinen (2005); Vincent (2011)

We have the Fisher identity; see e.g., Efron (2011)

∇ log pk(xk) =

An intermediate expression:

▶ ∇ log pk|0(xk |x0) is tractable (forward transition).
▶ The conditional expectation is not (backward conditional).

We are going to use the property of the conditional expectation to obtain

a loss function.
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Score matching (2/4)

We have

∇ log pk(Xk) = E[∇ log pk|0(Xk |X0)|Xk ] .

Using properties of the conditional expectation we have

∇ log pk =
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Score matching (2/4)

We use the following properties of the conditional expectation:

▶ Y = E[X |U] if Y = f (U), with f = argmin{E[∥X − f (U)∥2] : f ∈ L2(U)}.

Recall that we have

∇ log pk(Xk) = E[∇ log pk|0(Xk |X0)|Xk ] .

Using the previous property we have

∇ log pk = argmin{E[∥f (Xk)−∇ log pk|0(Xk |X0)∥2] : f ∈ L2(pk)} .

We obtain a loss function:

∇ log pk|0(xk |x0) is tractable (forward transition).

The expectation can be approximated with Monte Carlo (joint

distribution).

Note that this is valid for k ∈ {0, . . . , ns − 1}.
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Score matching (3/4)

Recall that the loss function is given by

∇ log pk = argmin{E[∥f (Xk)−∇ log pk|0(Xk |X0)∥2] : f ∈ L2(pk)} .

This loss function is called the Denoising Score Matching loss.

▶ ∇ log pk|0(Xk |X0) =?.

▶ f tries to predict the residual noise from Xk .
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Score matching (4/4)

Another formulation: the loss satisfies

E[∥f (Xk)−∇ log pk|0(Xk |X0)∥2]

= E[∥f (Xk)∥2 + 2div(f (Xk))] + E[∥∇ log pk|0(Xk |X0)∥2] .

We obtain the Implicit Score Matching loss function

∇ log pk = argmin{E[1/2∥f (Xk)∥2 + div(f (Xk))] : f ∈ L2(pk)} .

Comparison between ISM/DSM:

▶ DSM: access to ∇ log pk|0.
▶ ISM: no need of the transition density but computation of a

divergence.

▶ Approximation with the Hutchinson estimator:
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Training algorithm

We choose the DSM or ISM loss for all k ∈ {1, . . . , ns}
▶ DSMk(f ) = E[∥f (Xk)−∇ log pk|0(Xk |X0)∥2].
▶ ISMk(f ) = E[1/2∥f (Xk)∥2 + div(f (Xk))].

Defining the integrated loss for f : R+ × Rp → Rp.

▶ ℓDSM(f ) =
∑ns

k=1 λkDSMk(f (kγ, ·)),
▶ ℓISM(f ) =

∑ns
k=1 λkISMk(f (kγ, ·)).

▶ We define a weighting function λk ≥ 0.

Let {sθ}θ∈Θ a parametric family of functions such that

sθ : R+ × Rp → Rp.

▶ Usually {sθ}θ∈Θ is a family of neural networks.
▶ We optimize ℓDSM(θ) = ℓDSM(sθ) or ℓ

ISM(θ) = ℓISM(sθ).
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Backward sampling

Recall the goal:
▶ Sample from p0:ns (x0:ns ) = pns (xns )

∏ns−1
k=0 pk|k+1(xk |xk+1) (ancestral

sampling).
▶ Approximate backward

pk|k+1(xk |xk+1) ≈ N(xk ; xk+1 + γ{xk+1 + 2∇ log pk(xk+1)}, 2γ Id).

▶ Approximation of the score (DSM or ISM losses).

Once sθ⋆ is learned via DSM or ISM losses, i.e. sθ⋆(k, ·) ≈ ∇ log pk .

Sampling scheme:
▶ Y0 ∼ N(0, Id) (approximate sampling from pns ).
▶ Approximate ancestral sampling

Yk+1 = Yk + γ{Yk + 2sθ⋆(kγ,Yk)}+
√

2γZk+1 .

▶ Yns is approximately distributed according to the data-distribution.

Some remarks:
▶ Time-reversal can be obtained in continuous-time.
▶ Original approach relies on annealed Langevin Song and Ermon

(2019).
▶ Other approaches Ho et al. (2020); Gao et al. (2020).
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Links with annealed Langevin
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Failure of the score-estimation

We now present (one) original approach by Song and Ermon (2019).

Goal: sampling from the data distribution p⋆.

▶ Langevin algorithm: Xk+1 = Xk + γ∇ log p⋆(Xk) +
√
2γZk+1.

▶ Estimation of the Stein score ∇ log p⋆ with ISM

∇ log p⋆ = argmin{E[1/2∥f (X )∥2 + div(f (X ))] : f ∈ L2(p⋆)} .

▶ X ∼ p⋆.

Problems:

▶ Slow mixing with Langevin algorithm (non-convexity).
▶ Bad score approximation.

Figure 3: Image extracted from an online tutorial blogpost.

26 / 52

https://yang-song.github.io/blog/2021/score/


The power of smoothing

A solution: smoothing the density.

▶ Spreading the observations lead to better score estimations.
▶ Smoothing leads to better landscapes of the potential and faster

mixing (removal of spurious minima).

Problem: we do not target the right density.

▶ pσ = p ∗N(0, σ2).
▶ We have that Var(pσ) = Var(p) + σ2.

Trade-off:

▶ Small value of σ: close to p⋆, hard to sample.
▶ Large value of σ: far from p⋆, easy to sample.

Figure 4: Image extracted from an online tutorial blogpost.
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The best of both worlds

The main of idea of Song and Ermon (2019): annealed Langevin dynamics.

▶ Starting from a large value of σT , sample easily using the Langevin

dynamics.
▶ Reduce the value of σT > σT−1 and warm-start the new Langevin

dynamics with the previous samples.
▶ Repeat the procedure with σ0 very small (close to the target density).
▶ This is an annealed procedure.

Figure 5: Image extracted from an online tutorial blogpost.

28 / 52

https://yang-song.github.io/blog/2021/score/


Training algorithm

Consider {σt}nst=1 a sequence of increasing variances and set

pt = p⋆ ∗ N(0, σ2
t ).

Denote by {Xt}nst=0 by X0 ∼ µ⋆,

Xt+1 = Xt + (σ2
t+1 − σ2

t )
1/2Zt+1 , {Zt}nst=1

iid∼ N(0, Id) .

We choose the DSM or ISM loss for all t ∈ {1, . . . , ns}
▶ DSMt(f ) = E[∥f (Xt)−∇ log pt(Xt |X0)∥2].
▶ ISMt(f ) = E[1/2∥f (Xt)∥2 + div(f (Xt))].

Defining the integrated loss for f : R+ × Rp → Rp.

▶ ℓDSM(f ) =
∑ns

t=1 λtDSMt(f (tγ, ·)),
▶ ℓISM(f ) =

∑ns
t=1 λtISMt(f (tγ, ·)).

▶ We define a weighting function λt ≥ 0.

Let {sθ}θ∈Θ a parametric family of functions such that

sθ : R+ × Rp → Rp.

▶ Usually {sθ}θ∈Θ is a family of neural networks.
▶ We optimize ℓDSM(θ) = ℓDSM(sθ) or ℓ

ISM(θ) = ℓISM(sθ).
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Annealing algorithm

Algorithm 1 Sampling of annealing Langevin dynamics

1: Input: {σt}nst=1, {γ}
ns
t=1, K

2: Initialize Y 0
ns ∼ N (0, σns Id).

3: for t = ns to 1 do

4: for k = 0 to K − 1 do

5: Sample Y k+1
t = Y k

t + γtsθ(σt ,Y
k
t ) +

√
2γtZ

k+1
t

6: end for

7: Y 0
t−1 = Y K

t

8: end for

9: Return Y 0
0 .

If K = 1 then it is equivalent to the time-reversal except that:

▶ {γt}nst=1 is a priori unrelated to {σt}nst=1 contrary to the time-reversal

approach where we would have γt = γ and σ2
t = tγ.

▶ Main difference is that the forward process is the discretization of a

Brownian motion and not a Ornstein-Ulhenbeck process.
▶ Xk+1 = Xk − γXk +

√
2γZk+1 in the Ornstein-Ulhenbeck setting and

Xk+1 = Xk +
√
2γZk+1 in the Brownian case.
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Implementation details and tricks
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Careful implementation is necessary

Originally these models were hard to train Song and Ermon (2019), see

also this blogpost.

In what follows we describe a series of tricks which greatly facilitate the

training of these models. These tricks can be found in Song et al.

(2020b); Song and Ermon (2020); Nichol and Dhariwal (2021); Ho and

Salimans (2021); De Bortoli et al. (2021a).

We do not discuss the architecture here.
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Ornstein-Ulhenbeck and discretization

Here SGM as the discretization of a OU process:

▶ Target measure is N(0, Id) (approximately), the data should be

centered and reduced.
▶ Constant stepsize discretization is not what is done in practice.

In practice we consider a schedule on the stepsize:

Yk+1 = Yk + γk{Yk + 2sθ(
∑k

j=0 γj ,Yk)}+
√
2γkZk+1 .

▶ Linear schedule γk = γmin + (γmax − γmin)(ns − k)/ns
▶ Intuition: we need more stepsizes near the data distribution.
▶ Different schedules Song and Ermon (2019); Ho et al. (2020); Nichol

and Dhariwal (2021).

Figure 6: Budget of stepsizes. Image extracted from Watson et al. (2021).
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Loss function weighting

In practice a weighted version of the DSM loss is used.

▶ Recall that the DSM loss is given by

DSMk(f ) = E[∥f (Xk)−∇ log pk|0(Xk |X0)∥2].
▶ ℓDSM(f ) =

∑ns
k=1 λkDSMk(f (k, ·)).

▶ ∇ log pk|0(Xk |X0) = −Ẑk/σk

Intuition: λk function of σk to stabilize the loss Song et al. (2020b).

Additional remarks:

▶ Changing the discretization schedule is equivalent to do a time-change

in the original Ornstein-Ulhenbeck process then a fixed discretization.
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Exponential Moving Average

The training of the network is unstable.

To regularize this we consider an Exponential Moving Average of weights.

θ̄n+1 = (1−m)θ̄n +mθn .

▶ The parameter m corresponds to the forgetting of the initial

conditions.
▶ The parameters θ̄K are used at sampling times (K is the number of

training steps).

Figure 7: Training instabilities. Image extracted from Song and Ermon (2020).
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Predictor-corrector

Recall that we consider the following Euler-Maruyama discretization

Yk+1 = Yk + γk{Yk + 2sθ(
∑k

j=0 γj ,Yk)}+
√
2γkZk+1 .

We can also correct the Euler-Maruyama scheme using the time-reversal

property.

▶ We must have L(Yk) ≈ pk .
▶ Hence we go from Yk to Ŷk+1 with the Euler-Maruyama scheme

(predictor).
▶ We refine Ŷk+1 by running a Langevin chain targeting pk+1 (corrector).

Y 0
k+1 = Ŷk+1 , Y ℓ+1

k+1 = Y ℓ
k+1 + δk+1sθ(

∑k+1
j=0 γj ,Y

ℓ
k+1) +

√
2δk+1Z

ℓ+1
k+1 .

▶ {δk}nsk=0 is a sequence of stepsizes and we set Yk+1 = Y L
k+1 (L ∈ N).
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Conditional sampling and classifier-free guidance

If the data distribution contains classes (like MNIST, CIFAR-10, LSUN,

ImageNet or CelebA when classifying by attributes) then we can exploit

this extra structure.

Define a conditional score

DSMk(f ) = E[∥f (X c
k , c)−∇ log pk|0(X

c
k |X c

0 )∥2].
▶ c ∈ {1, . . . ,C} is the class of the image.
▶ Then, we can (approximately) sample from the class c by considering

Y c
0 ∼ N(0, Id)

Y c
k+1 = Y c

k + γk{Y c
k + 2sθ(

∑k
j=0 γj ,Y

c
k , c)}+

√
2γkZk+1 .

Figure 8: Class conditional generation. Image extracted from Song et al. (2020b).

Other improvements with unconditional guidance Ho and Salimans

(2021) or classifier guidance Dhariwal and Nichol (2021).
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Other approaches



Links with other models

Until now we have presented two approaches to derive score-based

generative models (SGMs) :

▶ A discrete-time time-reversal approach.
▶ An annealed Langevin approach.

The time-reversal approach is now widely used Song et al. (2020b).

We now present links with other generative models:

▶ SGMs as variational autoencoders Ho et al. (2020).

The connection with variational autoencoders allows for:

▶ Extension to discrete settings
▶ Acceleration of the sampling dynamics Watson et al. (2021)
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Connections with Variational AutoEncoders
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A variational perspective

We follow the approach of Ho et al. (2020).

Variational approach offers great flexibility:

▶ Optimization of the stepsize Watson et al. (2021).
▶ Learning of the covariance matrix Nichol and Dhariwal (2021).
▶ Non-Markov dynamics Song et al. (2020a).

Ho et al. (2020) was the first to propose a discretized

Ornstein-Ulhenbeck Markov chain as a forward process.

Figure 9: CelebA and CIFAR10 results. Image extracted from Ho et al. (2020).
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An Evidence Lower BOund (1/2)

We start by deriving an ELBO for the score-based generative models.

Note that such a derivation was already obtained by Sohl-Dickstein et al.

(2015).

Similar to VAE we maximize the log-likelihood for some well chosen

latent Markov model

log(pθ
0 (x0)) =

We now choose the variational distribution qϕ(x1:ns |x0):
▶ We choose a tractable Markovian (Gaussian) decomposition

qϕ(x1:ns |x0) =
∏ns−1

k=0 qϕ
k+1|k(xk+1|xk).

▶ Factorization qϕ(x1:ns |x0) = qϕ
ns |0(xns |x0)

∏ns−1
k=1 qϕ

k|k+1,0(xk |xk+1, x0).

▶ Tractability of qϕ
k|k+1,0.

Here, we consider

qϕ
k+1|k(xk+1|xk) = N(xk+1; (1− γ)xk , 2γ Id).

In Ho et al. (2020): auto-regressive process
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Note that such a derivation was already obtained by Sohl-Dickstein et al.

(2015).

Similar to VAE we maximize the log-likelihood for some well chosen

latent Markov model

log(pθ
0 (x0)) =

We now choose the variational distribution qϕ(x1:ns |x0):
▶ We choose a tractable Markovian (Gaussian) decomposition

qϕ(x1:ns |x0) =
∏ns−1

k=0 qϕ
k+1|k(xk+1|xk).

▶ Factorization qϕ(x1:ns |x0) = qϕ
ns |0(xns |x0)

∏ns−1
k=1 qϕ

k|k+1,0(xk |xk+1, x0).

▶ Tractability of qϕ
k|k+1,0.

Here, we consider

qϕ
k+1|k(xk+1|xk) = N(xk+1; (1− γ)xk , 2γ Id).

In Ho et al. (2020): auto-regressive process
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An Evidence Lower BOund (2/2)

Recall that we have log(pθ
0 (x0)) ≥ L with

L =
∫
(Rp)ns

log(
∏ns−1

k=0 pθ
k|k+1(xk |xk+1)p

θ
ns (xns )/q

ϕ(x1:ns |x0))qϕ(x1:ns |x0)dx1:ns .

We use the backward decomposition of qϕ(x1:ns |x0) and we get

L = Lns +
∑ns−1

k=1 Lk + L0 ,

with:

▶ Lns =
∫
Rp log(p

θ
ns (xns )/q

ϕ
ns |0(xns |x0))q

ϕ
ns |0(xns |x0)dxns .

▶ Lk =
∫
Rp log(p

θ
k|k+1(xk |xk+1)/q

ϕ
k|k+1,0(xk |xk+1, x0))q

ϕ
k,k+1|0(xk , xk+1|x0)dxk .

▶ L0 =
∫
Rp log(p

θ
0|1(x0|x1))q

ϕ
1|0(x1|x0)dx1.

The different terms:

▶ Lns does not depend on θ if we choose pθ
ns = N(0, Id).

▶ Lk is related to score-matching.
▶ L0 is more complicated and will be dealt with later.
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The backward qϕk|k+1,0 (1/2)

To compute Lk we need to compute qϕ
k|k+1,0.

We know that qϕ
k|k+1,0 is Gaussian with diagonal covariance and just

need to compute its parameter.

qϕ
k|0 = N(αkx0, σk Id) and qϕ

k+1|k = N(αk+1|k , σk+1|k Id).

Computing the parameters:

▶ αk+1|k = 1− γ, σ2
k+1|k = 2γ.

▶ Xk+1 = (1−γ)kX0+
√
2γ

∑k
j=1(1−γ)k−jZj+1 = (1−γ)kX0+σk+1Ẑk+1.

▶ Ẑk+1 ∼ N(0, Id) and σ2
k+1 = (1− (1− γ)2k)/(1− γ/2).

▶ αk+1 = (1− γ)k , σ2
k+1 = (1− (1− γ)2k)/(1− γ/2).

We have that

qϕ
k|k+1,0(xk |xk+1, x0) = qϕ

k+1|k(xk+1|xk)qϕ
k|0(xk |x0)/q

ϕ
k+1|0(xk+1|x0) .

▶ We can discard the denominator (normalizing constant).
▶ We can focus on log(qϕ

k+1|k(xk+1|xk)qϕ
k|0(xk |x0)).
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The backward qϕk|k+1,0 (2/2)

We have that

− 2 log(qϕ
k+1|k(xk+1|xk)qϕ

k|0(xk |x0))

= ∥xk − Ak|k+1xk+1 + Bk|k+1ẑk+1∥2/(2σ2
k|k+1) + D .

where

ẑk+1 = (xk+1 − x0)/σk+1 .

▶ D is a constant independent from xk .
▶ σ2

k|k+1 = (α2
k+1|k/σ

2
k+1|k + (1/σ2

k))
−1.

▶ Ak|k+1 = αk+1|k(σk|k+1/σk+1|k)
2 + αkσ

2
k|k+1/(αk+1σ

2
k).

▶ Bk|k+1 = (αkσk+1σ
2
k+1|k)/(αk+1σ

2
k).

Therefore, we choose the family

− log(pθ
k|k+1(xk |xk+1)) = ∥xk − Ak|k+1xk+1 + Bk|k+1ẑθ,k+1(xk+1)∥2/(2σ2

k|k+1) + E .

E is a constant, ẑθ,k+1(xk+1) is a function of xk+1 (estimator of the noise).
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Sampling from the model

How to train and sample the model?

Recall that we have set

− log(pθ
k|k+1(xk |xk+1)) = ∥xk − Ak|k+1xk+1 + Bk|k+1ẑθ,k+1(xk+1)∥2/(2σ2

k|k+1) + E .

Recall that pθ
ns = N(0, Id). To sample from the model:

▶ We sample Y0 ∼ N(0, Id)
▶ We consider the backward update

Yk+1 = Ak|k+1Yk − Bk|k+1ẑθ,k+1(Yk) + σk|k+1Zk+1 .

To train the model (without the therm L1|0):

▶ Minimize
∑ns

k=1 Lk(θ), with

−Lk(θ) = E[∥Yk+1 − Ak|k+1Yk + Bk|k+1ẑθ,k+1(Yk)∥2]/(2σ2
k|k+1) .
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Taylor expansion and comparison with SGM (2/2)

The model is already similar to SGM:

▶ We sample from N(0, Id) and use ancestral sampling.
▶ We train part of the drift term.

The analogy becomes even stronger when considering Taylor expansion of

Ak|k+1, Bk|k+1 and σk|k+1:

▶ Ak|k+1 = 1 + γ + o(γ).
▶ Bk|k+1 = 2γ + o(γ).
▶ σ2

k|k+1 = 2γ + o(γ).

Hence

Yk+1 = Ak|k+1Yk − Bk|k+1ẑθ,k+1(Yk) + σk|k+1Zk+1 ,

becomes (up to the first order)

Yk+1 = (1 + γ)Yk − 2γẑθ,k+1(Yk) +
√

2γZk+1 .

We can identify this recursion with the one of SGM if

ẑθ,k+1 ≈ −∇ log pθ
k+1, i.e., the neural network approximates the score.
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Taylor expansion and comparison with SGM (2/2)

We want to show that ẑθ,k+1 ≈ −∇ log pθ
k+1, i.e. the neural network

approximates the score.

Recall that we minimize the sum of the following loss functions

−Lk(θ) = E[∥Yk+1 − Ak|k+1Yk + Bk|k+1ẑθ,k+1(Yk)∥2]/(2σ2
k|k+1) .

Up to the first order we get that

−Lk(θ) = E[∥Yk+1 − (1 + γ)Yk + 2γẑθ,k+1(Yk)∥2]/(2γ) .

But we have (1 + γ)Xk+1 = (1− γ2)Xk +
√
2γ(1 + γ)Zk+1 and therefore

(1 + γ)Yk = (1− γ2)Yk+1 +
√
2γ(1 + γ)Zns−k .

Hence, up to the first order we get that

−Lk(θ) = E[∥
√

2γZns−k + 2γẑθ,k+1(Yk+1)∥2]/(2γ) ,

This is exactly the Denoising Score Matching loss (up to a minus term)

times λk (the weighting function appearing score-based models being

fixed to λk = 2γ).
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The term L0

The previous recursion is valid up to k = 1.

pθ is an independent decoder on the pixel of the image.

We assume that x0 ∈ [−1, 1]d

pθ(x0|x1) =
∏p

i=1

∫ b(x i0)

a(x i0)
exp[−∥x − µθ(x1)∥2 /σ2

1 ]/(2πσ
2
1)

pdx .

a(t) = t + 1/255 if t < 1 and +∞ otherwise.

b(t) = t − 1/255 if t > −1 and −∞ otherwise.

We could also have chosen the classical (non-discrete) decoding Gaussian

of the VAE.

Figure 10: CelebA results. Image extracted from Ho et al. (2020).
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Continuous diffusion models



Continuous forward process

Recall that in classical diffusion models, the forward dynamics is given by

the following Markov chain

Xk+1 = Xk − γXk +
√

2γZk+1 .

This is the Euler-Maruyama discretization of the Ornstein-Ulhenbeck

process.

dXt = −Xtdt +
√
2dBt .
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Time reversal

In discrete time we consider the ancestral sampling of the discretized

Ornstein-Ulhenbeck.

In the continuous-time setting we need to compute the time-reversal of

the Ornstein-Ulhenbeck.

▶ More precisely: does (Yt)t∈[0,T ] = (XT−t)t∈[0,T ] also satisfies a

Stochastic Differential Equation (SDE)?

The answer is yes under conditions and (Yt)t∈[0,T ] is a (weak) solution of

the following SDE

dYt = {Yt + 2∇ log pT−t(Yt)}dt +
√
2dBt .

Note that for any t ∈ [0,T ], pt is the density of L(Xt) w.r.t. the Lebesgue

measure, where we recall that (Xt)t∈[0,T ] is the forward noising process,

here a Ornstein-Ulhenbeck process.

A few remarks:

▶ First found in Anderson (1982); Haussmann and Pardoux (1986).
▶ The time-reversal formula is valid for more complicated diffusions.
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Time Reversal and Comparison with ancestral sampling

Recall that in the discrete-time setting we have

Yk+1 = Yk + γ{Yk + 2sθ⋆(γ(ns − k),Yk)}+
√

2γZk+1 .

In the continuous-time setting we have

dYt = {Yt + 2∇ log pT−t(Yt)}dt +
√
2dBt .

There is a clear link between the two formulations with Euler-Maruyama

discretization.

Note that sθ⋆(γ(ns − k), ·) is supposed to be close to pns−k , the density of

Xns−k .

pT−t is the density of XT−t but these two densities are close if the

stepsize is small.

In practice the Stein score is approximated using score-matching.

▶ DSM and ISM losses can be defined in continuous-time.
▶ Continuous losses can be used in practice because we can exactly

sample from the Ornstein-Ulhenbeck process.
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